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ABSTRACT
In this paper we present a method for learning from video demon-
strations by using human feedback to construct a mapping between
the internal state representation of the agent and the visual repre-
sentation from the video. In this way, we leverage the advantages
of both these representations, i.e., we learn the policy using agent
centered state representations, but are able to specify the expected
behavior using video demonstrations. We show the effectiveness of
our method by teaching a hopper agent in the MuJoCo simulator
to perform a backflip using a single video demonstration generated
in MuJoCo as well as from a real-world YouTube video of a person
performing a backflip.
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1 INTRODUCTION
A common way to train a reinforcement learning agents is by
optimizing the policy to maximize a well-specified reward function
[7, 10, 13]. But, even for experts, designing reward functions is a
complex and time-consuming process, and for some tasks, they
are too difficult to be specified by hand [3]. Consequently, other
approaches for teaching new skills to autonomous agents have been
explored. A common method for teaching new skills is through
example demonstrations [1, 2, 8]. Often, these demonstrations are
collected in the form of lower dimensional representations like
angles of joints of a robotic arm (often referred to as the standard
representation). However, collection of demonstrations using the
standard representation is a difficult process and requires expertise.
Other approaches like [5, 6, 9, 11, 12, 14] learn the expected behavior
by observing the task being performed in a video recording. This
method of providing expected behavior is simple, intuitive and can
leverage a large number of videos on the web. However, they do
not allow for any corrective feedback to improve the performance
of the agent. There are other methods like the ones proposed in [3,
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Figure 1: Schematic illustration of our architecture

4, 15, 16] that learn the task using human feedback. However, these
methods do not use the simple and intuitive method of showing
the expected behavior through videos.

We believe that a combination of these approaches could result
in a powerful method for teaching autonomous agents to perform
a task. In this paper, we leverage both the standard representations
and visual representations by learning a mapping between the two.
This simplifies the optimization of the reinforcement learning algo-
rithm as we can learn directly on the lower dimensional standard
representation but are still able to easily specify the desired behav-
ior using video demonstrations. To achieve this, we utilize human
feedback to learn similarity predictor between the standard and
visual representations. Learning this mapping between standard
and visual representations is a difficult problem for autonomous
agents, especially if the number of example behaviors is limited.
However, this can be easily performed by humans. In this paper,
we ask human participants to rate the similarity between behaviors
produced by the learning agent alongside example video clips of the
desired behavior. We show that human feedback enables our agent
to learn complex behaviors from a single video demonstration.

2 ARCHITECTURE
The goal of our framework is to teach a reinforcement learning
agent to replicate the behavior shown in a video demonstration. To
train this agent, we use a single video demonstration of the task and
human feedback that indicates the similarity between the agent’s
behavior and the video demonstration.

The architecture of our system is illustrated in Figure 1. Our
method consists of three processes running asynchronously. First,
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the similarity function S is learned by training a deep neural net-
work using human feedback collected in the form of similarity
ratings between the demonstrated clip and the corresponding be-
havior of the learning agent. This network enables the compari-
son between any agent-generated trajectory to that of expected
behavior provided by the demonstration video. Second, the com-
parison between the agent’s behavior and the expected behavior
using the similarity network is used as a reward signal for optimiz-
ing a reinforcement learning algorithm. During the optimization,
the RL agent generates trajectories that are similar to the video
demonstration with respect to the similarity function S . Finally,
segments of the trajectories generated during the optimization of
the reinforcement learning algorithm are provided to a human for
feedback. These three processes, i.e., training of the similarity net-
work, optimization using reinforcement learning and collecting
human feedback run simultaneously and asynchronously. Under
this framework, any traditional reinforcement learning algorithms
can be used in principle, however, we use trust region policy opti-
mization (TRPO) as it works well when the reward function is not
stationary [10].

To learn the similarity predictor S , we use human feedback to
provide ratings of how similar the agent’s behavior is to the video.
We show two short clips to the human. One clip is from the video
demonstration and another is the corresponding imitation by the
RL agent. The video demonstration and imitation clips are 0.3 sec-
onds long. The human provides feedback as a rating indicating the
similarity between both clips ranging from 1 to 5, where a rating
of 1 indicates that behaviors in both clips are not at all similar, and
5 indicates that they are very similar. We collect the feedback in
two stages. First, during a pre-training stage, feedback is collected
with the agent performing random actions. Later during training,
we use trajectories generated by the RL agent for getting human
feedback to further refine the similarity predictor.

3 EXPERIMENTS
We teach the hopper robot to perform a backflip in the MuJoCo en-
vironment from a single video demonstration and human feedback.
We compare our method to a traditional reinforcement learning al-
gorithm using a hand-coded reward function as well as the learning
from human preferences method [3].

For the traditional reinforcement learning comparison, we used a
reward function from [3] that was constructed to get a hopper agent
to backflip, where the more backflips the agent achieves in a given
period of time, the higher reward it receives. We use this “backflip
reward function” to train a traditional reinforcement learning agent
using TRPO. We save the video corresponding to the trajectory of
the TRPO agent with the maximum backflip reward. We use this
video as the demonstration video for teaching our agent to replicate
the backflip.

We also compare our method to learning from human pref-
erences by [3] that learns the reward function by collecting human
preferences between pairs of trajectory segments. To learn from hu-
man preferences, we collect preferences with the goal of performing
as many backflips as possible in 8 seconds.

For both our method and [3], we collected 350 total annotations.
200 of those annotations were collected during the pretraining stage

and 150 annotations using rollouts from the policy network that is
being optimized asynchronously.

Algorithm # of Human
samples

Maximum
backflip
reward

Total
backflips

TRPO n/a 19859.81 2
[3] 350 2064.27 1
Our method 350 3365.18 2

Table 1: Performance comparison on the Backflipping task

We used two metrics to compare our method’s performance: 1)
total reward achieved from the backflip reward function and 2) total
number of backflips performed during an episode (counted man-
ually from the produced trajectory). Table 1 shows the maximum
backflip reward and corresponding number of backflips performed
in 8 seconds. Not surprisingly, the traditional TRPO agent achieves
the highest reward as it was directly optimizing over the backflip
reward function. Even still, our method, which does not require
a reward function to optimize over, achieves higher reward com-
pared to the learning from preferences method. Even though our
method does not achieve the same amount of reward as the TRPO
baseline, our agent performs same number of backflips as that of
the TRPO baseline and one more backflip than the preferences
method achieved. We can get comparable performance to the TRPO
baseline without requiring the use of a handcrafted reward func-
tion, and can achieve significantly better performance compared to
the human preference method using the same amount of human
feedback. Additionally, our method has the potential to learn any
task by utilizing the vast number of videos on the web.

Figure 2: Comparison of the backflip in the real-world video
demonstration and by our agent

We also demonstrate the ability of our method to learn from an
actual YouTube video. We use the optimized similarity predictor to
teach our hopper agent to backflip using a real-world video from
YouTube of a human performing a backflip. The frames of the video
are shown in figure 2(a). It can be easily observed from Figure 2
that since the kinematics of the human and hopper robot are very
different, the mapping between between them is ambiguous. This
makes both the annotation and learning of the behavior a challeng-
ing problem. We collected 200 annotations during a pre-training
stage and 165 annotations while the reinforcement learning policy
was being optimized. Figure 2(b) shows the learned backflip per-
formed by the RL agent trained using our method. This shows the
effectiveness of our method in replicating behavior demonstrated
in single, non-annotated YouTube video.
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