
APPROVAL SHEET

Title Of Thesis: A GENERATIVE MODEL FOR TIME SERIES BASED ON
MULTIPLE NORMAL DISTRIBUTIONS

Name of Candidate: Gandhi Sunil Rajkumar
M.S. in Computer Science,
May 2015

Thesis and Abstract Approved:
Dr. Tim Oates
Professor
Department of Computer Science and
Electrical Engineering

Date Approved:

ABSTRACT

Title Of Thesis: A GENERATIVE MODEL FOR TIME SERIES BASED ON

MULTIPLE NORMAL DISTRIBUTIONS

Gandhi Sunil Rajkumar, M.S. Computer Science, May 2015

Thesis directed by: Dr. Tim Oates, Professor
Department of Computer Science and
Electrical Engineering

Discretization is a crucial first step in several time series mining applications. Our

research proposes a novel method to discretize time series data and develop a similarity

score based on the discretized representation. The similarity score allows us to compare

two time series sequences and enables us to perform pattern learning tasks such as clus-

tering, classification, and anomaly detection. We propose a generative model based on

multiple normal distributions and create an optimization technique to learn parameters of

these normal distributions. To show the effectiveness of our approach we perform com-

prehensive experiments in classifying datasets from the UCR time series repository and

trajectory datasets. We also explore the usefulness of grammar induction technique in dis-

criminating shifted time series and completely different time series.

Keywords: Discretization, Time series, Classification

A generative model for time series based on multiple

normal distributions

by

Gandhi Sunil Rajkumar

Thesis submitted to the Faculty of the Graduate School
of the University of Maryland in partial fulfillment

of the requirements for the degree of
M.S. Computer Science

2015

c© Copyright Gandhi Sunil Rajkumar 2015

Dedicated to friends and family who made journey worthwhile and mentors who guided

me to destination

ii

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGMENTS . iii

LIST OF FIGURES . vi

LIST OF TABLES . viii

Chapter 1 INTRODUCTION . 1

Chapter 2 BACKGROUND AND RELATED WORK 3

2.1 Preliminaries . 3

2.2 Hilbert Space Filling Curve . 6

2.3 Related Work . 9

Chapter 3 LEARNING MULTIPLE NORMAL DISTRIBUTIONS OVER

TIME SERIES DATA . 12

3.1 Time Series Similarity Measure . 12

3.1.1 Problem definition . 13

3.1.2 Discretization . 14

3.1.3 Approximation of Discretization Mechanism 18

iv

3.1.4 Similarity measure . 18

Chapter 4 EVALUATION AND EXPERIMENTAL RESULTS 20

4.1 Classification of time series data . 20

4.2 Effect of approximation algorithm . 22

4.3 Spatial Trajectory Classification . 26

Chapter 5 GRAMMAR INDUCTION OVER TIME SERIES DATA . . . 34

5.1 Motivation . 34

5.2 Background and Related work . 37

5.2.1 Sequitur Algorithm . 37

5.2.2 Minimal grammar parsing (MGP) 39

5.3 Grammar Induction over time series data 40

5.4 Results and Discussion . 42

Chapter 6 CONCLUSION AND FUTURE WORK 45

REFERENCES . 46

v

LIST OF FIGURES

2.1 Cylinder time series from cylinder bell funnel dataset 4

2.2 Histogram of Cylinder time series data from cylinder bell funnel dataset . . 6

2.3 Hilbert space filling curve of (a)order=1, (b)order=2, (c)order=3, (d)order=4,

(e)order=5, (f)order=6 in 2-dimensional space 7

2.4 Conversion of data from 2-dimensional space to 1-dimensional space using

hilbert curve of order 2 . 8

3.1 Two overlapping normal distribution with mean = 50 16

4.1 Speedup with respect to change in radius 23

4.2 Classification Accuracy with change in radius 24

4.3 Effect of radius on clustering with change in min variance 25

4.4 Effect of radius on clustering with change in penalty 25

4.5 Histogram of length of animal tracking trajectories 27

4.6 Histogram of length of hurricane tracking trajectories 28

4.7 Features learnt for the animal tracking dataset for the RB-TB method 30

4.8 Features learnt for the hurricane tracking dataset for the RB-TB method . . 31

4.9 Effect of hilbert curve order parameter on accuracy on the animal tracking

dataset . 32

vi

4.10 Effect of hilbert curve order parameter on accuracy on the hurricane track-

ing dataset . 33

5.1 Two identical but shifted time series . 35

5.2 Minimal grammar parsing (MGP) . 40

vii

LIST OF TABLES

4.1 Classification Accuracy comparison for Euclidean distance, SAX, DTW

and our algorithm . 21

4.2 Classification Accuracy comparison for TB-Only and RB-TB methods and

our algorithm . 29

5.1 Grammar rules generated by sequitur for string ”a a a a b b a a a a” 39

viii

Chapter 1

INTRODUCTION

Time series data is ubiquituous with its volume expanding at a rapid rate. Hence, time

series data mining is an important area of research and has useful applications in a variety

of domains including health care, shape recognition, and spatial trajectory data analysis.

Consequently, time series data mining has been studied in diverse research areas.

Time series can be high dimensional(Han & Kamber 2006), and processing multivari-

ate data directly can be computationally expensive. Also, there are several algorithms like

hashing, suffix trees, and grammar induction that are not defined for numerical values. This

has led to the development of several time series representation models. Symbolic aggre-

grate approximation (SAX) is one such representation. This representation has been shown

to be effective in several data mining tasks including classification, clustering, anomaly de-

tection(Lin et al. 2007) and motif discovery(Oates et al. 2013). Although SAX is widely

used for discretization of time series data, it assumes that time series data is normally

distributed and consequently divides the normal distribution into equiprobable regions for

symbol assignment. This assumption does not always hold in practice and can negatively

impact the performance of SAX based algorithms. This is evident from the results we

give in Chapter 4. The time series from the ’cylinder bell funnel’ dataset shown in Figure

2.1 and Figure 2.2 are good examples of data that are not normally distributed. We relax

1

2

this assumption and model the time series as a generative process from multiple normal

distributions.

Within the last decade there are several time series distance measures that have been

proposed. Nevertheless, Euclidean distance and dynamic time warping (DTW) are still

relevant and give high-performing baselines for classifying time series data using nearest-

neighbor algorithm (1NN) classification (Senin & Malinchik 2013). We propose a similar-

ity measure based on our discretization mechanism and compare its classification perfor-

mance with Euclidean distance and DTW.

To summarize, the following are our contributions:

1. We propose a novel discretization mechanism for time series data based on the more

general assumption that it is generated from multiple normal distributions.

2. We give an effective similarity measure based on the discretization mechanism pro-

posed. We evaluate our similarity measure by classifying data from the UCR time

series repository and comparing the performance with state of the art methods. We

also evaluate our measure on trajectory datasets.

3. We propose an approximate algorithm to significantly improve the discretization pro-

cessing time while retaining its effectiveness.

The remainder of the thesis is organized as follows, Chapter 2 discusses background

and related work, Chapter 3 explains the problem definition, our discretization mechanism,

its approximate version and similarity measure. In Chapter 4 we evaluate the performance

of our algorithms. We explore the usefulness of grammar induction algorithms in Chapter

5. We conclude and discuss future work in Chapter 6.

Chapter 2

BACKGROUND AND RELATED WORK

2.1 Preliminaries

In this section we precisely define terms and notations used throughout the thesis.

Time series: A time series is a sequence of data points ordered in time. We denote

time series by T and individual observations by t1, t2, . . . , tn, where n is the number of

observations in a time series. For example, consider the ’cylinder bell funnel’ dataset that

contains 3 classes called ’Cylinder’, ’Bell’ and ’Funnel’. Figure 2.1 shows an example

time series of cylinder class from ’cylinder bell funnel’ dataset . Our goal in this thesis is

to compare two time series.

3

4

FIG. 2.1. Cylinder time series from cylinder bell funnel dataset

Z-normalization is a process that brings the mean of a time series T to zero and its

standard deviation to one. Note that all time series from the UCR time series repository

used in this thesis are z-normalized as it is a common practice in the time series literature

(Patel et al. 2002) and it gives better classification accuracy.

Distance/Similarity measure: Given two time series T1 and T2, both of length n, the

distance/similarity measure is a function that gives how dissimilar/similar two time series

are. Note that distance measure defined here may or may not satisfy the properties of true

distance metric.

5

Probability density function of the Normal Distribution is

(2.1) N(x, µ, σ) =
1

σ
√

2π
e−(x−µ)2/2σ2

where parameter µ is the mean of the distribution and σ is the standard deviation. In

this thesis we make the assumption that time series are generated from a set of normal

distributions, and we try to recover the parameters of these normal distributions.

Likelihood is the probability of an observed outcome given the parameter values of a

model. The likelihood of observation x generated from normal distribution with parameters

µ and σ is denoted by L(x|N) and is given by its probability density function i.e. Equation

2.1.

Figure 2.2 shows the histogram of the time series data shown in Figure 2.1. On fitting

the data using maximum likelihood method we get a normal distribution with µ = 0.009

and σ = 0.99. Clearly, from Figure 2.2 we can observe that a single normal distribution

does not fit the data well. We can increase the likelihood of the data by representing it

using multiple normal distributions. To do so, we divide the data into subsets such that

each subset is generated from a different normal distribution.

Let T be a time series data of length n, then ti:k represents the subset of data between

index i and k. Assume that ti:k comes from normal distribution N(µ1, σ1) and tk:n comes

from normal distribution N(µ2, σ2). In this case, we define the likelihood of time series T

as follows

L(T | N(µ1, σ1), N(µ2, σ2)) =

L(ti:k | N(µ1, σ1))× L(ti:k | N(µ2, σ2))

6

FIG. 2.2. Histogram of Cylinder time series data from cylinder bell funnel dataset

2.2 Hilbert Space Filling Curve

To compare two trajectories we have to convert multi-dimensional trajectory data

(time, latitude, longitude) into a sequence of scalars. We use Hilbert space filling curve

(SFC) for this transformation. In this section we introduce hilbert space filling curve and

how they can be used for transformation of 2-dimensional data to 1-dimension.

Space filling has been a topic of interest for mathematicians since the late 19th

century when the first graphical representation was proposed by David Hilbert in 1891

(Hilbert 1891). Space filling curves provide mapping between d-dimensional space and

7

1-dimensional space. This mapping can be thought of as dividing d-dimensional space into

d-dimensional hypercubes with a line passing through each hypercube.

FIG. 2.3. Hilbert space filling curve of (a)order=1, (b)order=2, (c)order=3, (d)order=4,

(e)order=5, (f)order=6 in 2-dimensional space

Hilbert space filling curve are one of the most widely space filling curves because

of their locality preserving property. According to this property, if two points are close

in 1-dimensional space, then they are necesarily close in d-dimensional space. Although

the converse of this property is not true, i.e. there can be points which are close in d-

dimensional space, but are far apart in 1-dimensional space. Figure 2.3 shows Hilbert

space filling curves of order = 1 to order = 6. The basic curve has Hilbert curve order 1

and is shown in Figure 2.3 (a). For generation of a Hilbert space filling curve of kth order

8

in 2-dimensional space, each vertex of the Hilbert curve with k-1th order is replaced with

the basic curve rotated and/or reflected to fit the curve. Thus, if we replace every vertex in

Figure 2.3 (a) with the basic curve and rotate it in the appropriate direction Hilbert curve in

Figure 2.3 (b) can be generated. Note that the direction of rotation and/or reflection remains

the same irrespective of Hilbert curve order.

FIG. 2.4. Conversion of data from 2-dimensional space to 1-dimensional space using

hilbert curve of order 2

The basic Hilbert space filling curve with order = 1 divides the square into 4 sub-

squares as shown in Figure 2.4. For the Hilbert curve with order = 2, each sub-square

of the Hilbert curve with order = 1 is further divided into 4 sub-squares. This pro-

cess goes on as order of hilbert curve increases. Thus the number of sub-squares in 2-

dimensional Hilbert space filling curve is 4order. To convert 2-dimensional data points to

1-dimensional points, each sub-square is integer numbered from 0 to 4order − 1 starting

from the lower left corner as 0 and the lower right corner as 4order − 1. All other sub

squares are numbered in order of occurrence of corresponding vertex of the Hilbert space

9

filling curve from lower left corner. This ordering is shown in Figure 2.4 for Hilbert curves

of order = 1 and order = 2. It also shows conversion of series of 2D points to a sequence

of scalars. The sequence of scalars generated after conversion to 1-dimensional points is

T = [0, 3, 2, 2, 2, 7, 7, 8, 11, 13, 13, 2, 1, 1]

2.3 Related Work

In the past two decades, there has been an enormous interest in time series data mining.

There have been several proposed representations for time series data. The representation

closest to ours is SAX (Lin et al. 2007), a symbolic representation of time series data. SAX

takes the raw time series data as input and converts it into a set of symbols. This represen-

tation is well received and has been used widely in tasks like classification, clustering (Lin

et al. 2007), anomaly detection (Lin, Khade, & Li 2012) and motif discovery(Oates et al.

2013). But, SAX makes the assumption that time series data is generated from a single

normal distribution(Lin et al. 2007). This assumption is not always true and might hurt the

performance of SAX based algorithms. Also, there is loss of information in the process of

going from numerical data to SAX string as SAX does not retain distribution information

related to a particular symbol. We solve both these problems by assuming time series data

is generated from multiple normal distributions. This allows us to combine the best of both

worlds, i.e. symbolic representations and numerical representations. We can treat the index

to normal distributions in a time series as a sequence of symbols and use algorithms that

work only for discrete data, including hashing, Markov models, and suffix trees. We also

retain the distribution information of data for each symbol and use it to calculate similarity

between time series.

The assumption of time series data being generated from multiple normal distribu-

tions has been explored in previous research. The approaches for learning parameters of

10

multiple normal distributions generating time series data can be broadly categorized into

ones based on Gaussian processes and others based on Gaussian mixture models (GMM).

(Brahim-Belhouari & Bermak 2004) gives an approach for time series prediction based on

Gaussian processes, but their approach requires cubic time in the length of the time series

which is expensive for large time series data. Another approach used in (Povinelli et al.

2004) is based on GMM, which uses the Expectation Maximization(EM) algorithm to learn

parameters of Gaussian distributions. Unlike our approach, the computation time required

for GMM to converge is unbounded. Also, when using (Povinelli et al. 2004), the num-

ber of normal distributions generating time series has to be specified. This assumes user’s

knowledge of the number of normal distributions beforehand and that the number of normal

distributions is constant across all time series in the datasets. Both these assumptions are

unrealistic in real life and limit algorithms’ capacity. Our algorithm does not make these

assumptions.

We calculate the similarity measure between two time series and use it for nearest

neighbour classification of data. There are several techniques proposed in the literature

for comparing time series and time series classification. To the best of our knowledge,

SAX-VSM (Senin & Malinchik 2013) is the state of the art technique for time series clas-

sification, but it does not give a similarity measure and thus cannot be applied directly

for other data mining tasks like clustering, query by content,etc. Euclidean distance and

DTW are two similarity measures which are related and are used extensively. However,

Euclidean distance based techniques are sensitive to noise and shift along the temporal di-

mension. One way to mitigate this is to use an elastic distance measure such as Dynamic

Time Warping (DTW) (Keogh & Ratanamahatana 2005). However, while Dynamic Time

Warping based techniques work well for short sequences, they consistently fail to produce

satisfactory results when the sequence is long (Lin & Li 2009). We compare our distance

with Euclidean distance, SAX based distance and DTW in the experimental results.

11

We evaluate our similarity measure on standard time series datasets used in (Lin et

al. 2007) and trajectory classification datasets. We classify trajectories from an animal

tracking dataset and a hurricane dataset using the same training and test dataset as used in

(Lee et al. 2008). We show that our similarity measure gives competitive performance on

the animal tracking dataset, but (Lee et al. 2008) outperforms our similarity measure on

hurricane dataset. Although, (Lee et al. 2008) gives better accuracy on hurricane dataset,

(Lee et al. 2008) does not gives a similarity measure and thus is unsuitable for data mining

tasks other than classification like clustering and query by content.

Chapter 3

LEARNING MULTIPLE NORMAL DISTRIBUTIONS

OVER TIME SERIES DATA

3.1 Time Series Similarity Measure

The following are some of the key tasks in time series data mining(Lin et al. 2007).

This list is not exhaustive, but highlights key areas.

1. Classification: Given a time series T, identify the class it belongs to using some

training data (Geurts 2001).

2. Query by Content: Given a query time series T, and some (dis)similarity measure

D(T,C) find the most similar time series in the database (Psaila & Wimmers Mo-

hamed &It 1995) (Faloutsos, Ranganathan, & Manolopoulos 1994) (Keogh et al.

2001).

3. Clustering: Find natural groupings of the time series in the database under some sim-

ilarity/dissimilarity measure D(T,C) (Kalpakis, Gada, & Puttagunta 2001) (Keogh &

Pazzani 1998).

4. Anomaly Detection: Given a set of time series T, find time series that are anoma-

lous compared to other time series in database. (Dasgupta & Forrest 1996) (Keogh,

12

13

Lonardi, & Chiu 2002).

All the above problems can be solved given a suitable similarity measure. Thus, in

this work our goal is to give a reasonable similarity measure.

To compute the similarity between time series we first discretize the time series and

then calculate likelihood of other time series as similarity measure.

3.1.1 Problem definition

Given time series T1 and T2, we define a function that returns a similarity measure

between two time series.

To compare these time series, we divide time series T1 into subsets such that each

subset comes from a separate normal distribution. Our goal is to learn parameters of these

normal distribution such that they maximize the likelihood of the data while reducing the

number of normal distributions. We use likelihood of time series T2 with respect to normal

distributions parameters learned for T1 as similarity measure.

There are two extremes when we learn parameters of normal distributions for time

series T1. One extreme is to have every point in time series T1 in a separate subset and

have a normal distribution with mean equal to its value and zero variance. This model will

perfectly fit T1 and the likelihood of this model will be maximum, but will require a large

number of normal distributions. The other extreme will be to fit a single normal distribution

that maximizes the likelihood of the complete time series. This model will not fit the data

in the time series, similar to the example shown in Figure 2.2, and the likelihood of the data

will be low. We optimize between these two extremes and try to find the minimum number

of normal distributions that maximizes the likelihood of the data.

14

3.1.2 Discretization

Let T = t1, t2, . . . , tn be the time series to be discretized. Our goal is to find the most

likely model consisting of a minimum number of normal distributions with respect to the

time series data. Let M = N1, N2, . . . , Nl be a model with l such normal distributions

each representing a subset of time series T . Each subset of the time series is denoted by

S1, S2, . . . , Sl, where points in subset Si are generated from normal distribution Ni. The

likelihood of time series T with respect to the above model M is given by

L(T |M) =
l∏

i=0

L(Si | Ni)

To avoid a scenario where each subset is a single point in the time series, we do not allow

variance of normal distributions to go below a certain threshold. We denote this threshold

by a hyperparameter called min variance.

We want to find the most likely model for time series T , i.e we want to maximize

L(M | T)

L(M |T) = (L(T |M)× L(M))/L(T)

We ignore L(T) because it remains constant and is independent of the model for time series

T ,

L(M | T) = (L(T |M)× L(M))

= L(M)×
l∏

i=0

L(Si | Ni)

Since, we would like our model to fit the data as accurately as possible, while using few

normal distribution, we define L(M) as e−l×λ. Here λ is the hyperparameter that repre-

sents the penalty for using extra normal distributions. It controls the granularity of the

15

discretization mechanism. Higher λ will have fewer normal distributions, thus L(T | M)

will decrease. This formalization will prefer a simpler model with fewer normal distribu-

tions, thus avoiding overfitting.

(3.1) L(M | T) = e−l×λ ×
l∏

i=0

L(Si | Ni)

Given a time series of length n, there are exponentially many combinations of subsets

of time series. So it will take exponential time to maximize Equation 3.1 by calculating

likelihood for each possible model. To simplify the problem we the make following as-

sumption:

Given two points in time series ti, tk such that ti < tk and ti, tk are generated from

the same normal distribution N1, all points tj , ti < tj < tk are generated from normal

distribution N1

Thus all the points adjacent to each other in the sorted time series can only come from

one normal distribution. We believe that this assumption is valid as contiguous points are

likely be generated from the same normal distribution. Consider time series with points

[0, 100, 48, 50, 52], the two out of many possible ways of dividing this time series are

S1 = [[0, 100], [48, 50, 52]] and S2 = [[0], [48, 50, 52], [100]]. The two normal distributions

corresponding to S1 have µ = 50 and are shown in figure 3.1. We are rejecting models

similar to S1 by making the above assumption because we want to minimize overlap be-

tween normal distributions. This will be enable us to use this discretization mechanism

for algorithms like grammar induction that can only work with discrete data. Out of two

options specified above, we select model S2 irrespective of the likelihood of both models.

16

FIG. 3.1. Two overlapping normal distribution with mean = 50

Due to this assumption, we can maximize Equation 3.1 efficiently. We first sort the

time series data and then try to maximize over all possible ways of dividing the sorted time

series. Lets denote sorted time series by ST = st1, st2, . . . , stn. We maximize Equation 3.1

over sorted time series using dynamic programming. Following is the recurrence relation

of the dynamic programming algorithm:

(3.2) L(STi:j) = max

L(STi:j | N) ∗ e−λ,

maxi≤k≤jL(STi:k)× L(STk:j)

17

Here L(STi:j | N) is the likelihood of data from the sorted time between index i and j

coming from a single normal distribution. maxi≤k≤jL(STi:k)× L(STk:j) is the likelihood

if we divide the time series from index i to k and k to j, for all values of k.

On implementation of this recurrence, we get l normal distributions that maxi-

mize Equation 3.1. We unsort indexes to the normal distributions and store them in

index normal to preserve ordering. Now, algorithms which work only on discrete data

like grammar induction algorithms can use these indices for processing. Thus, these in-

dices can be used in all algorithms that can work with SAX symbols generated using (Lin

et al. 2007). Algorithm 1 gives the complete algorithm.

Algorithm 1: Discretization algorithm
Input: TimeSeries T , min variance, λ

ST = sort(T)

Maximize following recurrence relation :

L(STi:j) = max

L(STi:j | N) ∗ e−λ,

maxi≤k≤jL(STi:k)× L(STk:j)

L(STi:j | N) is likelihood of data from sorted time between index i and j coming

from single normal distribution and e−λ is penalty because of each normal

distribution.

normals = array of maximum likelihood fit of normal on subsets that maximize

above recurrence relation

indexes = index in normals array for all points in sorted time series

normalsindexes = unsort(indexes)

18

The time complexity of this algorithm is O(n2). We realize that the complexity of the

algorithm is still high, especially for longer time series. Hence, in the next section we give

faster approximate algorithm.

3.1.3 Approximation of Discretization Mechanism

The time complexity of algorithm 1 is O(n2). In many scenarios where time series

length is large, O(n2) might be slow. However, points close to each other tend to be gen-

erated from the same normal distribution.Thus, we speed up the algorithm by grouping

together points with similar numerical values. Here we introduce another parameter called

the radius r that will controls the precision of approximation.

After sorting in Algorithm 1, we start with the first point in ST and group all points

within radius r of first point. We then repeat the same process with the next point outside

radius r and so forth until all points in the series are processed. If this gives k divisions

of time series, we assume that each k divisions are generated from the same normal dis-

tribution. So either we merge two adjacent groups and represent them using same normal

distribution or we represent each group using individual normal distribution. We use recur-

rence relation give in Equation 3.2 to decide whether to merge groups or not. But instead

of n points, we are optimizing over k groups. Thus the complexity comes down to O(k2),

where k < n.

We perform experiments with the approximation algorithm in section 4.2 and show its

effectiveness. In Section 4.2 we show the effect of the radius hyperparameter on accuracy

and the trade-off between accuracy and precision.

3.1.4 Similarity measure

We give a similarity measure between time series T1 and T2 based on the output of the

discretization mechanism described in the previous section. We discretize T1 and calculate

19

L(T2 | T1) as a similarity measure. We calculate L(T2 | T1) as
∏n

i=0 L(t2i | Ni), where t2i

is the ith point in of time series T2 and Ni is the normal distribution corresponding to the

ith point in time series T1.This computation is fast and takes O(n) time.

Notice the assumption for the calculation of the above mentioned likelihood that the

two time series being compared must be of same length. This holds true for all the datasets

that we use for classification from the UCR time series repository. But this assumption

might not hold true in practice. For example, trajectories from the animal tracking dataset

and hurricane dataset are of different length. We solve this problem by using a window

based approach, where window size is the size of the smaller time series between two time

series to be compared. For example, if want a similarity measure between time series T1

and T2 such that size(T1) > size(T2), we compute L(T1(1 : size(T2)) | T2) as the distance

measure. We then move the window by 1, to compute L(T1(2 : size(T2)+1) | T2) and keep

doing this until we are at end of time series T1. We then return the average of computed

similarity for all windows. We take average because it takes into account similarity between

all subsequeneces of T1 and T2. We do not take minimum or maximum, thus not making

the assumption that the best or the worst match between the subsequences of T1 and time

series T2 is the discriminatory subsequence. We have used this method for comparing the

trajectories of unequal length in the animal tracking and hurricane dataset.

Chapter 4

EVALUATION AND EXPERIMENTAL RESULTS

We have proposed a time series discretization algorithm and a distance measure based

on it in section 3.1. In this section we evaluate our time series algorithm and the approxima-

tion to it. We use classification accuracy on UCR time series datasets (Keogh et al. 2006)

to evaluate the discretization mechanism. Classification accuracy has been used previously

in (Lin et al. 2007) for evaluating discretization mechanisms. Note that our discretization

mechanism can be used for other data mining tasks like clustering and query by content as

well.

4.1 Classification of time series data

We evaluate our approach on 10 datasets taken from benchmark data at the UCR time

series repository(Keogh et al. 2006). We compare accuracy with previously published

performance results of competing classifiers based on Euclidean distance, DTW and SAX

(Lin et al. 2007) (Senin & Malinchik 2013). To make comparison fair, all classifiers are

1-Nearest Neighbour classifier and with exactly the same training and testing data. Note

that (Senin & Malinchik 2013) gives state of art classifier, but this classifier is not based on

a similarity measure making it difficult to adapt directly to other data mining tasks. Also,

(Senin & Malinchik 2013) and (Lin, Khade, & Li 2012) use SAX as underlying discretiza-

20

21

tion mechanism. These techniques can also be used with our discretization mechanism

instead of SAX.

Our algorithm has two hyperparameters, λ and min variance. For choosing param-

eters, we use 60 percent of the training set for training and the remaining 40 percent for

validation. We use the python hyperparameter optimization library hyperopt (Bergstra et

al. 2011) for optimizing over hyperparameters on training data. We use a tree of parzen

estimators (TPE) algorithm in hyperopt with λ generated from a uniform distribution with

low = 0.1 and high = 50 andmin variance generated from a lognormal distribution with

µ = −0.9 and σ = 1.39. The number of maximum iterations for optimization of hyperpa-

rameters is 40. In case of a tie, we randomly pick one of the hyperparameter values. We

then use optimized hyperparameters on the test data.

Dataset Classes Training Set Testing Set Length SAX EU DTW Normals Distance

CBF 3 30 900 128 89.6 (87.61,91.59) 85.2 (82.88,87.52) 99.7 (0.9934,1) 94.222 (92.7,95.74)

ECG200 2 100 100 96 88 (81.63,94.37) 88 (81.63,94.37) 90.7 (85.01,96.39) 92 (86.68,97.32)

ECGFiveDays 2 23 861 136 93.5 (91.85,95.15) 76.8 (73.98,79.63) 88.734 (86.62,90.85)

Gun point 2 50 150 150 82 (75.85,88.15) 91.3 (86.79,95.81) 77 (70.27,83.73) 91.333 (86.83,95.83)

50Words 50 450 455 270 65.9 (61.54,70.26) 63.1 (58.67,67.53) 69 (64.75,73.25) 66.374 (62.03,70.71)

synthetic control 6 300 300 60 98 (96.42,99.58) 88 (84.32,91.68) 99.3 (98.36,1) 88.667 (85.08,92.26)

Coffee 2 28 28 286 53.6 (35.13,72.07) 75 (58.96,91.04) 82.1 (67.9,96.3) 89.286 (77.83,1)

Beef 5 30 30 470 43.3 (25.57,61.03) 53.3 (35.45,71.15) 50 (32.11,67.89) 53.334 (35.48,71.19)

FaceAll 14 560 1690 131 67 (64.76,69.24) 71.4 (69.25,73.55) 80.8 (78.92,82.68) 71.183 (69.02,73.34)

Lighting2 2 60 61 637 78.7 (68.43,88.97) 75.4 (64.59,86.21) 86.9 (78.43,95.37) 75.410 (64.6,86.22)

Average 74.01 78.42 81.23 81.05

Table 4.1. Classification Accuracy comparison for Euclidean distance, SAX, DTW and

our algorithm

Table 4.1 shows the accuracy of SAX based distance, Euclidean distance, dynamic

time warping and our distance metric. In brackets it also shows binomial confidence inter-

val which is interval estimate of population parameter and it includes parameter of interest

if experiment is repeated several number of times. We use the Normal Approximation

22

method for calculation of confidence intervals. We say that performance of a method 1 is

statistically significantly better than method 2, if the accuracy of method 1 is greater than

the accuracy of method 2 and their confidence intervals don’t overlap. Accuracy for SAX,

EU and DTW are reported from previously published results from (Lin et al. 2007) and

(Senin & Malinchik 2013). We were unable to find results for SAX on the ’ECGFiveDays’

dataset, hence we have left it blank.

On average we perform better than SAX and Euclidean distance and are comparable

to dynamic time warping. Our accuracy is statistically significantly better than the SAX on

two datasets, CBF and Coffee dataset. On all other datasets except synthetic control and

Lightning2 dataset, we perform better than the SAX but difference in accuracy is not statis-

tically significant. Similarly, for Euclidean distance we perform statistically significantly

better on CBF dataset and statistically significantly worse on ECGFiveDays. On remaining

all datasets difference in accuracy is statistically insignificant. In comparison with DTW,

on two datasets, ECGFiveDays and Gun point we perform statistically significantly bet-

ter and on the datasets synthetic control and FaceAll we perform statistically significantly

worse. Overall, classification accuracy of our method is atleast as good as SAX, Euclidean

distance and DTW.

4.2 Effect of approximation algorithm

In this section we perform experiments to show the effectiveness of the approximation

algorithm and give some intuition on choosing the radius. To show effectiveness of the

approximation, we look at change in accuracy of the classification algorithm and speedup

with respect to radius. We also try to understand the relationship between min variance,

λ and radius.

23

FIG. 4.1. Speedup with respect to change in radius

24

FIG. 4.2. Classification Accuracy with change in radius

Figure 4.1 shows the speedup achieved by the approximation algorithm on the

’ECG200’ dataset from the UCR time series repository with respect to radius. Figure 4.2

shows classification accuracy on the ’ECG200’ dataset with respect to radius. The hyper-

parameter values in these experiment were min variance = 19.1 and λ = 0.17. As we

can observe towards radius r = 0.25, accuracy does not change and stays 92%, but speedup

increases to 88%. As we increase radius speedup increases and there is a general trend of

decrease in accuracy. Thus, we can achieve significant speedup (88%) without decrease in

accuracy. This shows the effectiveness of our approximation algorithm.

25

FIG. 4.3. Effect of radius on clustering with change in min variance

FIG. 4.4. Effect of radius on clustering with change in penalty

We randomly picked a time series from the ECG200 dataset and compared the output

of the approximation algorithm and the original discretization mechanism. To compare

both algorithms we compare partitions generated by both algorithms using adjusted mutual

information(AMI) (Vinh, Epps, & Bailey 2009). Figure 4.3 shows the effect of varying

26

radius on AMI for different values of min variance with λ being same. Figure 4.4 shows

effect of radius on λwithmin variance constant. We can observe from Figure 4.3 that un-

til a certain threshold of radius, output from exact algorithm and approximation are exactly

same. But there is significant speedup. For example, for min variance = 10, threshold

value is 0.5, where we get a speedup of 99%. As the min variance increases threshold

value decreases. We see similar behaviour when we vary λ, but threshold values of radius

are much smaller than Figure 4.3. To compute an appropriate value of radius, we recom-

mend computing min variance and penalty using cross validation and choosing radius

equal to the threshold value. This will ensure that we get maximum speedup without much

difference in results from exact and approximate algorithms.

We show the effectiveness of our approximation algorithm on CBF and Gun Point

dataset. We select maximum radius that does not change discretization output for the time

series and compute speedup corresponding to it. We compute this speedup for 5 randomly

selected time series in a dataset and average them. For all these experiments, we have

fixed λ = 0.1 and min varaince = 0.1. The average speedup for CBF and Gun Point

dataset was 53.43% and 62.04%. Thus we can get significant speedup without change in

discretization output using our approximation algorithm.

4.3 Spatial Trajectory Classification

In the previous section we tested our similarity measure on datasets as diverse as

shape, medicine, surveillance, and industry from the UCR time series repository. But, all

these datasets have time series of equal length. To understand the effectiveness of our

similarity measure on datasets with series of unequal length, in this section we classify

spatial trajectory data.

27

FIG. 4.5. Histogram of length of animal tracking trajectories

The trajectory data is intrinsically complex to explore since patterns of movement are

often driven by unperceived goals and constrained by unknown environmental settings.

We use two datasets: animal tracking dataset and hurricane dataset for evaluation of our

distance measure. Both these datasets have trajectories of unequal length. Figure 4.5 and

Figure 4.6 shows the histogram of the length of trajectories in the animal tracking dataset

and the hurricane dataset. From Figure 4.5 and Figure 4.6 we can observe that both these

datasets have trajectories with length which varies over a large range.

28

FIG. 4.6. Histogram of length of hurricane tracking trajectories

The animal movement data set was generated by the Starkey project (Preisler et al.

2004) . We use the animal movements observed in June 1995 as it is used in previous

research by (Lee et al. 2008). This data set is divided into three classes by species: elk,

deer, and cattle. The numbers of trajectories (points) are 38 (7117), 30 (4333), and 34

(3540), respectively.

The hurricane track data set has the Atlantic hurricanes for the years 1950 through

2006. The Saffir-Simpson scale classifies hurricanes into categories 1-5 by intensity. A

high category number indicates a high intensity. Categories 2 and 3 are chosen for two

classes. The numbers of trajectories (points) are 61 (2459) and 72 (3126) respectively.

Both these datasets have been used in previous research by (Lee et al. 2008) who

give two algorithms, TB-only and RB-TB based on features used for classification of these

datastes. We used the same training and test set as used by (Lee et al. 2008) and compare

classification accuracy. Note that although we show the accuracy of (Lee et al. 2008) in

29

Table 4.2, these accuracies are not directly comparable as (Lee et al. 2008) does not give

distance metric. This makes method of (Lee et al. 2008) unsuitable for other data mining

tasks mentioned in Section 3.1 like clustering and query by content.

To find the distance between two trajectories, the multi-dimensional trajectory data

(time, latitude, longitude) has to be transformed into a sequence of scalars. To achieve this,

the trajectory points were mapped to the visit order of a Hilbert space filling curve (SFC)

embedded in the trajectory manifold space and indexed by the recorded times in the visit

order. The Hilbert SFC-transformed trajectory produces a time series, which can be used

for classification using our algorithm. This adds another hyperparameter called the Hilbert

curve order which decides the granularity of the space filling curve.

We classify trajectories using a 1-nearest neighbour classifier. For choosing param-

eters for classification, we use 40% of the training set as a validation set. We decide the

parameters using validation data and report the accuracy with optimized parameters on

test data. We use the python hyperparameter optimization library hyperopt (Bergstra et al.

2011) for optimizing over hyperparameters on the training data. We use a tree of parzen

estimators (TPE) algorithm in hyperopt with λ generated from uniform distribution with

low = 0.1 and high = 50, min variance generated from a lognormal distribution with

µ = −0.9 and σ = 1.39 and order can take any value between 2 and 10 . The num-

ber of maximum iterations for optimization of hyperparameters is 40. In case of a tie, we

randomly pick one of the hyperparameter values.

Dataset Classes Training Set Testing Set TB-Only RB-TB NDist

Animal Tracking Data 3 80 18 50 (26.9,73.1) 83.3 (66.07,1) 83.3 (66.07,1)

Hurricane Dataset 2 112 21 65.4 (45.05,85.75) 73.1 (54.13,92.07) 52.3 (30.94,73.66)

Table 4.2. Classification Accuracy comparison for TB-Only and RB-TB methods and our

algorithm

30

Table 4.2 shows a comparison of the accuracy of the TB-only and RB-TB methods

from (Lee et al. 2008) and our distance metric. We perform better than the TB-Only method

and as good as the RB-TB method on the animal tracking dataset. But, both methods in

(Lee et al. 2008) outperforms our method on the hurricane dataset. Although the accuracy

is less for the hurricane dataset, the method by (Lee et al. 2008) cannot be used for other

data mining tasks like clustering and query by content as they don’t give a distance measure.

FIG. 4.7. Features learnt for the animal tracking dataset for the RB-TB method

31

FIG. 4.8. Features learnt for the hurricane tracking dataset for the RB-TB method

Figure 4.7 and Figure 4.8 show features learned by (Lee et al. 2008) for the animal

tracking and hurricane datasets respectively. These methods use two types of features: re-

gion based and direction based shown by colored boxes and colored lines respectively. In

the animal tracking dataset from Figure 4.7, both kinds of features are useful for classifi-

cation. But for the hurricane dataset, direction based features are more useful than region

based features. This can be seen in Figure 4.8 as number of trajectories classified using

the region based feature are few. Direction based features are difficult to capture using our

distance measure as we are calculating the likelihood of each point in the trajectory data.

Thus the RB-TB and TB-only methods outperform our method on the hurricane dataset.

32

FIG. 4.9. Effect of hilbert curve order parameter on accuracy on the animal tracking

dataset

33

FIG. 4.10. Effect of hilbert curve order parameter on accuracy on the hurricane tracking

dataset

Figure 4.9 and Figure 4.10 show the effect of Hilbert curve order on classification

accuracy for the animal tracking and hurricane datasets respectively. From both figures

we can notice that accuracy is low for very high as well as for very low Hilbert curve

values. For very low Hilbert curve orders, even the points far apart in two dimensional

space get the same mapping in the Hilbert space filling curve. And for high hilbert curve

order, points closer in two dimensional space can be mapped to a value in the Hilbert

space filling curve which is far apart. In both these cases the actual distance between

two points is not accurately approximated by the Hilbert space filling curve, thus affecting

classification accuracy negatively. Thus it is an important parameter and we determine it

using hyperparameter optimization.

Chapter 5

GRAMMAR INDUCTION OVER TIME SERIES DATA

5.1 Motivation

In the previous chapter we gave a discretization mechanism and distance measure

based on it for time series data. Although this distance measure is effective on datasets in

the UCR time series repository and trajectory datasets, it is not rotation invariant and might

not perform well for shifted time series data. Having a distance measure that is robust to

shifted time series is an attractive property as it is unrealistic to assume that all time series

to be compared will be aligned. In this chapter we explore the usage of grammar induction

technique for comparison of shifted time series.

Consider two time series shown in Figure 5.1, Both time series are the same, except

that one is a shifted version of the other. On discretization of both time series using the

method given in section 3.1.2, time series 1 (T1) and times series 2 (T2) are discretized as

shown below.

T1 = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

T2 = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]

34

35

Here index 0 refers to normal distribution (N0) with µ = −0.9 and σ = 0.48 and

index 1 refers to normal distribution (N1) with µ = 1.03 and σ = 0.48. Notice that normal

distribution inferred are same as both time series and discretization parameters are same,

just order in which they occur is different.

FIG. 5.1. Two identical but shifted time series

If we compare time series T1 and T2 using the similarity measure given in Section

3.1.4, we would get a very low similarity score even though one time series is a shifted

version of the other. This is because we calculate L(T2 | T1) =
∏n

i=0 L(t2i | Ni), where

t2i is the ith point in time series T2 and Ni is the normal distribution corresponding to the

ith point in time series T1. In this case the similarity measure in Section 3.1.4 will return∏n/2
i=0 L(t2i | N0) ×

∏n
i=n/2 L(t2i | N1). As the time series is shifted, both terms above

will have low values and so will the similarity score. To solve this problem, we divide

time series T1 into subsequences and compare each subsequence with every subsequence

in time series T2. Ideally, in the above scenario the first half of time series T1 is compared

with the second half of time series T2 and the second half of time series T1 is compared

with the first half of time series T2. We use a grammar induction algorithm called Sequitur

36

(Nevill-Manning & Witten 1997a) for division of time series into subsequences and a sub

routine of grammar induction algorithm IRRMGP (Carrascosa et al. 2010) to calculate a

similairity measure. We give details of both these algorithms in the next section.

The use of grammar induction techniques for division of time series data is inspired by

recent success of grammar induction for motif discovery (Oates et al. 2013) and anomaly

detection (Senin et al.) on time series data. Both these problems use grammar induction

for dividing time series into subsequences.

Apart from the advantage of being robust to shifts in time series data, the use of gram-

mar induction is also theoretically motivated. Firstly, context free grammars are strictly

more expressive than finite state machines. This helps recover context free structure from

time series data and thus helps understanding long distance dependencies and hierarchical

structure. Secondly, the computation of distance is based on a notion of Kolmogorov Com-

plexity, size of the smallest Turing machine that can describe a single string. Kolmogorov

Complexity is an uncomputable measure due to the non-computability of Halting Problem.

Our distance measure can be considered as an approximation of conditional Kolmogorov

Complexity.

(Li et al. 2004) proposes a practical application of Kolmogorov complexity and define

a universal similarity metric between two sequences as

d(x, y) =
max{K(x|y), K(y|x)}
max{K(x), K(y)}

As K is uncomputable, any compression algorithm can be used in its place as an approxima-

tion. Since grammar induction has been used effectively as compressor (Nevill-Manning

& Witten 1997b) , we can use it for approximating Kolmogorov complexity. Here for com-

putation of conditional Kolmogorov complexity for comparison of two time series T1 and

T2, we first compress T1 using grammar induction and then try to find the smallest parse

37

tree for T2 based on the grammar learned from T1.

To summarize, in this chapter we introduce a distance measure to compare time series

data based on grammar induction algorithms and we evaluate our distance measure on

trajectory datasets.

5.2 Background and Related work

Our algorithm for time series comparison is based on two existing algorithms called

Sequitur (Nevill-Manning & Witten 1997a) and minimal grammar parsing (MGP) (Gallé

2011). In this section we introduce both these algorithms.

5.2.1 Sequitur Algorithm

(Nevill-Manning & Witten 1997a) proposes a linear time grammar induction algo-

rithm called Sequitur for finding hierarchical patterns in textual or symbolic data. Sequitur

is a greedy algorithm which discovers structure in data by identifying repetitions of symbols

and then storing them in the form of a context-free grammar. Sequitur generates grammar

rules based on two properties:

1. Bigram uniqueness : No pair of adjacent symbols appears more than once in the

grammar. While processing symbols, if we encounter a duplicate bigram, then we

either create a new rule or substitute the bigram with a non-terminal if the rule for

that bigram exists already.

2. Rule utility : Every rule is used more than once. This constraint helps in creating

longer rules of size greater than 2.

38

Algorithm 2: Sequitur Algorithm

while new input symbol do

append it to rule S while Two symbols are linked do

if bigram is repeated and the repetitions do not overlap then

if other occurrence is a complete rule then
replace new bigram with the non-terminal symbol that heads the

rule
else

form a new rule and replace both bigrams with the new

non-terminal symbol

else
insert the bigram into the index

while bigram is replaced by a non terminal do
if either symbol is a non terminal symbol that only occurs once elsewhere

then
remove the rule, substituting its contents in place of the other

non-terminal symbol

Algorithm 2 gives the Sequitur algorithm for inferring context free grammar from data

as given by (Nevill-Manning & Witten 1997a). We use the Sequitur algorithm due to its

simplicity and efficient linear time computational cost. Table 5.1 shows rules generated by

Sequitur algorithm for input string S = ”aaaabbaaaa”. It also shows expanded grammar

rule associated with each non terminal. These expanded grammar rules are also called

constituent associated with the respective non-terminal. As we can notice in Table 5.1,

Sequitur effectively compresses an input string and represents it as grammar rules.

39

Grammar Rule Expanded Grammar Rule

R1 −→ R3 b b R3 a a a a b b a a a a

R2 −→ a a a a

R3 −→ R2 R2 a a a a

Table 5.1. Grammar rules generated by sequitur for string ”a a a a b b a a a a”

5.2.2 Minimal grammar parsing (MGP)

(Gallé 2011) introduces the problem of minimal grammar parsing(MGP) for straight

line grammars, i.e., grammar which can parse only one string. The problem can be stated

as follows :

Given a string S, set of non-terminals N = {N0, N1, ...Nm} and corresponding ex-

pansions/constituents for each non-terminal w = {w0, w1, ...wm}, the goal of the MGP

algorithm is to find a grammar of minimal size using only non-terminals in N that can

parse string S.

Minimal grammar parsing (MGP) can be solved in polynomial time. To solve MGP,

first a path graphG is constructed with every element in string S as edge label in path graph.

Thus a path graph G has n + 1 vertices, where n is the number of tokens in string S. Then

we iterate through each constituent and search for constituents in graph G by matching

each edge label with each token in the constituents. This can be thought of as searching all

sub paths in path graphG. When a constituent is matched, an edge is created from the node

where the match started to the node where the match ends. Notice that there can be several

overlapping edges because of the same or different constituents. We repeat this process

with each constituent as a string. The shortest path across this graph corresponds to the

smallest parse tree using only non terminals given by N .

For example consider string S = ababbababbabaabbabaa and suppose the constituents

40

are Ω = {S, abbaba, bab}, then the minimal grammar parsing is N0 −→ aN2N2N1N1a,

and N1 −→ abN2a , N2 −→ bab. Figure 5.2 shows computation of a minimal grammar

parsing of string S with constituents Ω = {S, abbaba, bab}.

FIG. 5.2. Minimal grammar parsing (MGP)

5.3 Grammar Induction over time series data

In this section, we describe our similarity measure based on grammar induction for

time series data. This measure will be based on comparison of subsequences instead of

complete time series and hence will be more robust to shift in time series data. This sim-

ilarity measure is based on a notion of conditional Kolmogorov complexity as described

in Section 5.1. Intuitively, we compute the extent to which we can compress a time series

given that we know grammar from which another time series is generated and use it as

41

similarity measure.

Let T1 = {t1, t2, .., tm} and T2 = {t1, t2, .., tn} be two time series to be compared,

where m and n are the length of time series T1 and T2 respectively. We want to compute

the likelihood of T2 given that we know the grammar generating time series T1. As grammar

induction algorithms only work on discretized data, we first discretize time series T1 into set

of normal distribution using the technique described in Chapter 3. On discretization we get

normal distributions N = {N1, N2, ..Np} generating time series T1 and an array of indexes

I = {I1, I2, ..Im} where every index Ii refers to normal distribution in N that generated

corresponding point in T1. We run the grammar induction algorithm Sequitur described in

Section 5.2.1 on the array of indexes generated by the discretization algorithm. This gives

us grammar G where every rule in the grammar corresponds to a repeated subsequence in

time series T1. Here we choose Sequitur as the grammar induction algorithm because it is

online and efficient. The subsequences related to rules learned by Sequitur correspond to

recurrent patterns in time series data.

On computation of grammar G corresponding to time series T1, we try to compress

time series T2 with respect toG using a variation of minimal grammar parsing (MGP). First,

we create a path graph of length of time series T2 such that edge labels are values in time

series T2 just like in the MGP. We use all subsequences generated by sequitur from T1 as

constituents in MGP algorithm. If Ip..Iq is a subsequence of indexes corresponding to a rule

in G. We say that symbol Ip is matched to edge label v if L(v | Nr) > threshold, where

Nr is the normal distribution pointed by Ip and threshold is a user defined parameter. If

all indexes Ip..Iq are matched to all adjacent edge labels in the path graph, then there is a

subsequence match. Subsequence matches correspond to matches of constituents in MGP.

In case of a match, an edge is added to the path graph from the node where the match started

to the node where the match ends. We then find the shortest path from the start node to the

end node and return the size of the shortest path as a distance measure. If the number of

42

rules matched is high, then both the time series are similar and returned size of the shortest

path is small. If none of the subsequences are matched, the returned size is equal to the size

of time series T2.

5.4 Results and Discussion

We evaluate our grammar induction based distance measure on shifted time series

and the trajectory dataset. The goal of experiments on shifted time series is to understand

whether a grammar induction based distance measure is able to distinguish between shifted

versions of time series and different time series. For this experiment, we take 3 time series

from the CBF dataset, each belonging to cylinder, bell and funnel classes and use them

as the training set. We create 5 time series for each time series in the training set by

circularly shifting it from random time point. For example, if the train set time series is

T = [1, 2, 3, 4, 5] and random integer 2 is generated then the shifted time series would be

T = [4, 5, 1, 2, 3]. By this process we get 15 time series in the test set. We classify this

shifted time series dataset using grammar based distance measure with the same parameters

as used in experiments with the CBF dataset in Table 4.1 and randomly picking a threshold

parameter between 0.1 and 0.4. Not surprisingly, we get 100% accuracy every time on this

dataset. As opposed to Euclidean distance and distance measure proposed in Chapter 3

which gave accuracy of 20% and 26.6% respectively. (The parameters used in the grammar

induction based measure and distance measure in Chapter 3 were same) This shows the

grammar induction based distance measure’s ability to distinguish between shifted versions

of the same time series and different time series.

Motivated by results on shifted time series dataset we evaluated our grammar induc-

tion based distance measure on trajectory datasets. The experimental setup used was iden-

tical to one used in the previous section in Table 4.2. We evaluate distance measure on two

43

datasets : Animal tracking and Hurricane datasets. We decide parameter values using the

hyperparameter optimization library hyperopt. The only difference is that there is an extra

parameter for threshold in the grammar induction based method. We decide value of this

parameter using hyperopt, and it is generated from uniform distribution with low = 0.2

and high = 0.4.

Dataset Classes Training Set Testing Set TB-Only RB-TB NDist rSequitur

Animal Tracking Data 3 80 18 50 (26.9,73.1) 83.3 (66.07,1) 83.3 (66.07,1) 55.55 (32.59,78.51)

Hurricane Dataset 2 112 21 65.4 (45.05,85.75) 73.1 (54.13,92.07) 52.3 (30.94,73.66) 52.38 (30.94,73.66)

Table 5.4 shows comparison of accuracy of TB-only, RB-TB methods from (Lee et

al. 2008), distance measure based on normal distributions and grammar induction based

distance measure. Although grammar induction based distance measure is able to recognize

shifted time series, it did not help in classification of trajectory datasets.

Surprisingly, classification accuracy of the distance measure given in Section 3.1.4

is better than the accuracy using grammar induction based distance measure. This

might be because the distance measure described in Section 5.3 does not compute dif-

ferences in uncompressed part of time series. For example, consider 3 time series T1 =

[1, 1.1, 0.9, 2, 2.1, 1.9], T2 = [1, 1.1, 0.9, 3, 3.1, 2.9] and T3 = [1, 1.1, 0.9, 10, 10.1, 10.9]. If

we calculate the L(T2 | T1) and L(T3 | T1), clearly L(T2 | T1) > L(T3 | T1). Thus us-

ing the distance measure given in Section 3.1.4, we will conclude that T2 and T1 are more

similar to each other than T3 and T1. But, if we use distance measure given in Section 5.3,

we will learn Sequitur grammar on the discretized version of T1 and then try to parse time

series T2 and T3. In both cases we are just able to parse first 3 points in time series T2 and

T3. Thus the size of smallest parse tree is 4 for both comparison between T2 against T1 and

T3 against T1. As we are not comparing uncompressed part of time series, we come to false

conclusion that T3 and T2 are equally similar to T1. This property of the grammar induction

44

based distance measure might be the reason of poor classification accuracy in Table 5.4.

Chapter 6

CONCLUSION AND FUTURE WORK

This thesis provides a novel discretization mechanism for time series data based on the

more general assumption that it is generated from multiple normal distributions. An effec-

tive similarity measure based on the discretization mechanism is proposed and evaluated by

classifying data from the UCR time series repository and comparing it with the state of the

art methods. The similarity measure was evaluated on trajectory datasets to show its effec-

tiveness in diverse domains. To improve efficiency we have also provided an approximate

algorithm that significantly improves the discretization time while retaining its effective-

ness. We have also demonstrated a grammar induction technique that discriminates shifted

time series against completely different time series.

In future, we would like to evaluate the grammar induction based distance measure on

UCR time series datasets. We would also like to evaluate our distance measures on other

tasks like clustering, query by content and motif discovery.

The problem with current grammar based distance measure is that it does not compare

uncompressed subsequences of times series. This negatively impacts classification accu-

racy as shown in Section 5.4. In future we would like to improve the grammar based dis-

tance measure by comparing uncompressed subsequences of time series data. This might

improve classification accuracy on the animal tracking and hurricane datasets.

45

REFERENCES

[1] Bergstra, J. S.; Bardenet, R.; Bengio, Y.; and Kégl, B. 2011. Algorithms for hyper-

parameter optimization. In Advances in Neural Information Processing Systems, 2546–

2554.

[2] Brahim-Belhouari, S., and Bermak, A. 2004. Gaussian process for nonstationary time

series prediction. Computational Statistics & Data Analysis 47(4):705–712.

[3] Carrascosa, R.; Coste, F.; Gallé, M.; and Infante-Lopez, G. 2010. Choosing word

occurrences for the smallest grammar problem. In Language and Automata Theory and

Applications. Springer. 154–165.

[4] Dasgupta, D., and Forrest, S. 1996. Novelty detection in time series data using ideas

from immunology. In Proceedings of the international conference on intelligent systems,

82–87.

[5] Faloutsos, C.; Ranganathan, M.; and Manolopoulos, Y. 1994. Fast subsequence match-

ing in time-series databases. SIGMOD Rec. 23(2):419–429.

[6] Gallé, M. 2011. Searching for compact hierarchical structures in DNA by means of

the Smallest Grammar Problem. Ph.D. Dissertation, Université Rennes 1.

[7] Geurts, P. 2001. Pattern extraction for time series classification. In Principles of Data

Mining and Knowledge Discovery. Springer. 115–127.

[8] Han, J., and Kamber, M. 2006. Data Mining, Southeast Asia Edition: Concepts and

Techniques. Morgan kaufmann.

46

47

[9] Hilbert, D. 1891. Ueber die stetige abbildung einer line auf ein flächenstück. Mathe-

matische Annalen 38(3):459–460.

[10] Kalpakis, K.; Gada, D.; and Puttagunta, V. 2001. Distance measures for effective

clustering of arima time-series. In Data Mining, 2001. ICDM 2001, Proceedings IEEE

International Conference on, 273–280. IEEE.

[11] Keogh, E. J., and Pazzani, M. J. 1998. An enhanced representation of time series

which allows fast and accurate classification, clustering and relevance feedback. In

KDD, volume 98, 239–243.

[12] Keogh, E., and Ratanamahatana, C. A. 2005. Exact indexing of dynamic time warp-

ing. Knowledge and information systems 7(3):358–386.

[13] Keogh, E.; Chakrabarti, K.; Pazzani, M.; and Mehrotra, S. 2001. Locally adaptive di-

mensionality reduction for indexing large time series databases. ACM SIGMOD Record

30(2):151–162.

[14] Keogh, E.; Xi, X.; Wei, L.; and Ratanamahatana, C. A. 2006. The ucr

time series classification/clustering homepage. URL= http://www. cs. ucr. edu/˜ ea-

monn/time series data.

[15] Keogh, E.; Lonardi, S.; and Chiu, B.-c. 2002. Finding surprising patterns in a time

series database in linear time and space. In Proceedings of the eighth ACM SIGKDD

international conference on Knowledge discovery and data mining, 550–556. ACM.

[16] Lee, J.-G.; Han, J.; Li, X.; and Gonzalez, H. 2008. Traclass: trajectory classifica-

tion using hierarchical region-based and trajectory-based clustering. Proceedings of the

VLDB Endowment 1(1):1081–1094.

48

[17] Li, M.; Chen, X.; Li, X.; Ma, B.; and Vitányi, P. M. 2004. The similarity metric.

Information Theory, IEEE Transactions on 50(12):3250–3264.

[18] Lin, J., and Li, Y. 2009. Finding structural similarity in time series data using bag-of-

patterns representation. In Scientific and Statistical Database Management, 461–477.

Springer.

[19] Lin, J.; Keogh, E.; Wei, L.; and Lonardi, S. 2007. Experiencing sax: a novel symbolic

representation of time series. In Journal Data Mining and Knowledge Discovery.

[20] Lin, J.; Khade, R.; and Li, Y. 2012. Rotation-invariant similarity in time series using

bag-of-patterns representation. Journal of Intelligent Information Systems 39(2):287–

315.

[21] Nevill-Manning, C. G., and Witten, I. H. 1997a. Identifying hierarchical structure in

sequences: A linear-time algorithm. arXiv preprint cs/9709102.

[22] Nevill-Manning, C. G., and Witten, I. H. 1997b. Linear-time, incremental hierarchy

inference for compression. In Data Compression Conference, 1997. DCC’97. Proceed-

ings, 3–11. IEEE.

[23] Oates, T.; Boedihardjo, A. P.; Lin, J.; Chen, C.; Frankenstein, S.; and Gandhi, S.

2013. Motif discovery in spatial trajectories using grammar inference. In Proceedings

of the 22nd ACM international conference on Conference on information & knowledge

management, 1465–1468. ACM.

[24] Patel, P.; Keogh, E.; Lin, J.; and Lonardi, S. 2002. Mining motifs in massive time

series databases. In Data Mining, 2002. ICDM 2003. Proceedings. 2002 IEEE Interna-

tional Conference on, 370–377. IEEE.

49

[25] Povinelli, R. J.; Johnson, M. T.; Lindgren, A. C.; and Ye, J. 2004. Time series

classification using gaussian mixture models of reconstructed phase spaces. Knowledge

and Data Engineering, IEEE Transactions on 16(6):779–783.

[26] Preisler, H. K.; Ager, A. A.; Johnson, B. K.; and Kie, J. G. 2004. Modeling animal

movements using stochastic differential equations. Environmetrics 15(7):643–657.

[27] Psaila, R. A. G., and Wimmers Mohamed &It, E. L. 1995. Querying shapes of

histories.

[28] Senin, P., and Malinchik, S. 2013. Sax-vsm: Interpretable time series classification

using sax and vector space model. In Data Mining (ICDM), 2013 IEEE 13th Interna-

tional Conference on, 1175–1180. IEEE.

[29] Senin, P.; Lin, J.; Wang, X.; Oates, T.; Gandhi, S.; Boedihardjo, A. P.; Chen, C.; and

Frankenstein, S. Time series anomaly discovery with grammar-based compression.

[30] Vinh, N. X.; Epps, J.; and Bailey, J. 2009. Information theoretic measures for clus-

terings comparison: is a correction for chance necessary? In Proceedings of the 26th

Annual International Conference on Machine Learning, 1073–1080. ACM.

